欢迎光临酷猫写作网
当前位置:酷猫写作 > 范文大全 > 工作总结 > 总结范文

平行四边形知识总结3篇

发布时间:2023-06-08 13:04:04 查看人数:36

平行四边形知识总结3篇

第1篇 八年级奥数平行四边形知识点总结2022

性质:

(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。

(简述为“平行四边形的两组对边分别相等”)

(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。

(简述为“平行四边形的两组对角分别相等”)

( 3)如果一个四边形是平行四边形,那么这个四边形的邻角互补

(简述为“平行四边形的邻角互补”)

(4)夹在两条平行线间的平行的高相等。(平行线间的高距离处处相等)

(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。

(简述为“平行四边形的对角线互相平分”)

(6)连接任意四边形各边的中点所得图形是平行四边形。(推论)

(7)平行四边形的面积等于底和高的积。(可视为矩形).

(8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。

(9)平行四边形是中心对称图形,对称中心是两对角线的交点.

(10)平行四边形不是轴对称图形,但平行四边形是中心对称图形。矩形和菱形是轴对称图形。注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。

(11)平行四边形abcd中(如图)e为ab的中点,则ac和de互相三等分,一般地,若e为ab上靠近a的n等分点,则ac和de互相(n+1)等分。

(12)平行四边形abcd中,ac、bd是平行四边形abcd的对角线,则各四边的平方和等于对角线的平方和。

(13)平行四边形对角线把平行四边形面积分成四等份。

(14)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。

(15)平行四边形中,一个角的顶点向他对角的两边所做的高,与这个角的两边组成的夹角相等。

平行四边形的对边平行且相等平行四边形的对角相等,邻角互补平行四边形的对角线互相平分平行四边形的对角线的平方和等于四边的平方和平行四边形是中心对称图形,对称中心是两条对角线的交点平行四边形的内角和是外角和的四分之一 。

概念:

同一平面内,两组对边分别平行的四边形称为平行四边形。

判定

1、两组对边分别平行的四边形是平行四边形(定义判定法);

2、一组对边平行且相等的四边形是平行四边形;

3、两组对边分别相等的四边形是平行四边形;

4、对角线互相平分的四边形是平行四边形;

5、两组对角分别相等的四边形是平行四边形;(不可以直接用)

6、每一组邻角都互补的四边形是平行四边形。(同上)

第2篇 初中数学平行四边形知识点总结

初中数学平行四边形知识点总结

初二数学知识点总结之平行四边形的性质

下面是对平行四边形的性质做的知识点的总结学习。

平行四边形的性质:

① 两组对边分别平行的四边形叫做平行四边形。

② 平行四边形不相邻的两个顶点连成的线段叫他的对角线。

③ 平行四边形的对边/对角相等。

④平行四边形的对角线互相平分。

上面对平行四边形的性质知识点同学们已经很好的学习了,希望上面的知识同学们能很好的掌握,并能很好的帮助同学们学习。

初中数学知识点总结:平面直角坐标系

下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系

平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

三个规定:

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

初中数学知识点:平面直角坐标系的构成

对于平面直角坐标系的构成内容,下面我们一起来学习哦。

平面直角坐标系的构成

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴或y轴统称为坐标轴,它们的公共原点o称为直角坐标系的原点。

通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

初中数学知识点:点的坐标的性质

下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

点的坐标的性质

建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

对于平面内任意一点c,过点c分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应点a,b分别叫做点c的横坐标、纵坐标,有序实数对(a,b)叫做点c的坐标。

一个点在不同的象限或坐标轴上,点的坐标不一样。

希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

初中数学知识点:因式分解的一般步骤

关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

因式分解的一般步骤

如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

相信上面对因式分解的一般步骤知识的.内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

初中数学知识点:因式分解

下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

因式分解

因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

因式分解与整式乘法的关系:m(a+b+c)

公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

提取公因式步骤:

①确定公因式。②确定商式③公因式与商式写成积的形式。

分解因式注意;

①不准丢字母

②不准丢常数项注意查项数

③双重括号化成单括号

④结果按数单字母单项式多项式顺序排列

⑤相同因式写成幂的形式

⑥首项负号放括号外

⑦括号内同类项合并。

通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。

第3篇 2022初三年级奥数特殊平行四边形知识点总结

1.1菱形的性质与判定

菱形的定义:一组邻边相等的平行四边形叫做菱形。

※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。

菱形是轴对称图形,每条对角线所在的直线都是对称轴。

※菱形的判别方法:一组邻边相等的平行四边形是菱形。

对角线互相垂直的平行四边形是菱形。

四条边都相等的四边形是菱形。

1.2 矩形的性质与判定

※矩形的定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。

※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴)

※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。

对角线相等的平行四边形是矩形。

四个角都相等的四边形是矩形。

※推论:直角三角形斜边上的中线等于斜边的一半。

1.3 正方形的性质与判定

正方形的定义:一组邻边相等的矩形叫做正方形。

※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴)

※正方形常用的判定:有一个内角是直角的菱形是正方形;

邻边相等的矩形是正方形;

对角线相等的菱形是正方形;

对角线互相垂直的矩形是正方形。

正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):

※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。

※两条腰相等的梯形叫做等腰梯形。

※一条腰和底垂直的梯形叫做直角梯形。

平行四边形知识总结3篇

初中数学平行四边形知识点总结初二数学知识点总结之平行四边形的性质下面是对平行四边形的性质做的知识点的总结学习。平行四边形的性质:① 两组对边分别平行的四边形叫做平…
推荐度:
点击下载文档文档为doc格式

平行四边形知识相关文章

  • 平行四边形知识总结3篇
  • 平行四边形知识总结3篇36人关注

    初中数学平行四边形知识点总结初二数学知识点总结之平行四边形的性质下面是对平行四边形的性质做的知识点的总结学习。平行四边形的性质:① 两组对边分别平行的四 ...[更多]

总结范文热门信息