欢迎光临酷猫写作网
当前位置:酷猫写作 > 范文大全 > 工作总结 > 总结范文

百分数总结10篇

发布时间:2023-06-09 08:39:02 查看人数:51

百分数总结10篇

第1篇 小升初数学分数与百分数的应用知识点总结梳理

小升初数学分数与百分数的应用知识点总结梳理

分数与百分数的应用

基本概念与性质:

分数:把单位“1”平均分成几份,表示这样的一份或几份的数。

分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

分数单位:把单位“1”平均分成几份,表示这样一份的数。

百分数:表示一个数是另一个数百分之几的数。

常用方法:

①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。

②对应思维方法:找出题目中具体的量与它所占的率的'直接对应关系。

③转化思维方法:把一类应用题转化成另一类应用题进行解答。最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。常见的处理方法是确定不同的标准为一倍量。

④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。

⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。有以下三种情况:a、分量发生变化,总量不变。b、总量发生变化,但其中有的分量不变。c、总量和分量都发生变化,但分量之间的差量不变化。

⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。

⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。

⑧浓度配比法:一般应用于总量和分量都发生变化的状况。

第2篇 六年级百分数知识点总结

六年级百分数知识点总结

六年级百分数知识点总结

1、意义:表示一个数是另一个数的百分之几。(千分数:表示一个数是另一个数的千分之几)

2、百分数和分数的区别:

①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;

分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。

②、百分数的分子可以是整数,也可以是小数;

分数的分子不能是小数,只能是除0以外的自然数。

3、百分数与小数的互化:

(1)小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。

(2) 百分数化成小数:把小数点向左移动两位,同时去掉百分号

4、百分数的和分数的互化

(1)百分数化成分数:先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分

(2)分数化成百分数:

① 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。

②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

5、用百分数解决问题

(一)一般应用题

2、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题:

数量关系式和分数乘法解决问题中的关系式相同:

(1)分率前是“的”:单位“1”的量×分率=分率对应量 10的10%是多少

(2)分率前是“多或少” :单位“1”的量×(1+—分率)=分率对应量 比10多(少)10%

3、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。

解法:(建议:最好用方程解答)

(1)方程:根据数量关系式设未知量为x,用方程解答。

(2)算术(用除法): 分率对应量÷对应分率 = 单位“1”的量

4、求一个数比另一个数多(少)百分之几的问题:

两个数的相差量÷单位“1”的量 × 100% 或: 求多百分之几:(大数÷小数 – 1) × 100%② 求少百分之几:( 1 - 小数÷大数)× 100%

(二)、折扣

1、折扣:商品按原定价格的`百分之几出售,叫做折扣。通称“打折”。

几折就表示十分之几,也就是百分之几十。例如八折==80﹪,六折五=0.65=65﹪

2、 一成是十分之一,也就是10%。三成五就是十分之三点五,也就是35%

(三)、纳税

1、纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

2、纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和

国防安全等事业。

3、应纳税额:缴纳的税款叫做应纳税额。

4、税率:应纳税额与各种收入的比率叫做税率。

5、应纳税额的计算方法:应纳税额 = 总收入 × 税率

(四)利息

1、存款分为活期、整存整取和零存整取等方法。

2、储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也

使得个人用钱更加安全和有计划,还可以增加一些收入。

3、本金:存入银行的钱叫做本金。

4、利息:取款时银行多支付的钱叫做利息。

5、利率:利息与本金的比值叫做利率。

6、利息的计算公式:利息=本金×利率×时间

7、注意:如要上利息税(国债和教育储藏的利息不纳税),则:

税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)

① 甲是50,乙是40,甲是乙的百分之几?(50是40的百分之几?)50÷40=125%

② 甲是50,乙是40,乙是甲的百分之几?(40是50的百分之几?)40÷50=80%

③ 乙是40,甲是乙的125%,甲数是多少?(40的125%是多少?)40×125%=50

④ 甲是50,乙是甲的80%,乙数是多少?(50的80%是多少?)50×80%=40

⑤ 乙是40,乙是甲的80%,甲数是多少?(一个数的80%是40,这个数是多少?)40÷80%=50 ⑥ 甲是50,甲是乙的125%,乙数是多少?(一个数的125%是50,这个数是多少?)50÷125%=40 ⑦ 甲是50,乙是40,甲比乙多百分之几?(50比40多百分之几?)(50-40)÷40×100%=25% ⑧ 甲是50,乙是40,乙比甲少百分之几?(40比50少百分之几?)(50-40)÷50×100%=20% ⑨ 甲比乙多25%,多10,乙是多少?10÷25%=40

⑩ 甲比乙多25%,多10,甲是多少?10÷25%+10=50

乙比甲少20%,少10,甲是多少?10÷20%=50

乙比甲少20%,少10,乙是多少?10÷20%-10=40

乙是40,甲比乙多25%,甲数是多少?(什么数比40多25%?)40×(1+25%)=50

甲是50,乙比甲少20%,乙数是多少?(什么数比50多25%?)50×(1-20%)=40

乙是40,比甲少20%,甲数是多少?(40比什么数少20%?)40÷(1-20%)=50

甲是50,比乙多25%,乙数是多少?(50比什么数多25%?)40÷(1+25%)=40。

第3篇 小升初数学百分数应用知识点总结

求增加百分之几?减少百分之几?

公式:增加百分之几=增加的部分÷单位1

减少百分之几=减少的部分÷单位1

例如:

1、45立方厘米的水结成冰后,冰的体积为50立方厘米,冰的体积比原来水的体积增加百分之几?

解题思路:根据公式增加百分之几=增加的部分÷单位1,先确定单位1是水,已经知道是45:增加的部分不知道,可以利用50减45求得5;最后用增加的部分5÷单位1水的45就等于增加百分之几。

计算步骤:第一步:单位1:水:45立方厘米

第二步:增加的部分:50—45=5立方厘米

第三步:增加百分之几:5÷45=11.1%

2、45立方厘米的水结成冰后,体积增加了5立方厘米,冰的体积比原来水的体积增加百分之几?

解题思路:根据公式增加百分之几=增加的部分÷单位1,先确定单位1是水,已经知道是45:增加的部分是5立方厘米;最后用增加的部分5÷单位1水的45就等于增加百分之几。

计算步骤:第一步:单位1:水:45立方厘米

第二步:增加的部分:5立方厘米

第三步:增加百分之几:5÷45=11.1%

3、水结成冰后,体积增加了5立方厘米,冰的体积为50立方厘米,冰的体积比原来水的体积增加百分之几?

解题思路:根据公式增加百分之几=增加的部分÷单位1,先确定单位1是水,不知道但可以根据题目“水结成冰后,体积增加了5立方厘米”知道水是少的,冰是多的,所以可以用50—5求出水是45立方厘米。加的部分是5立方厘米;;最后用增加的部分5÷单位1水的45就等于增加百分之几。

计算步骤:第一步:单位1:水:50—5=45立方厘米

第二步:增加的部分:5立方厘米

第三步:增加百分之几:5÷45=11.1%

4、“减少百分之几与增加百分之几”的解题方法完全相同。

5、与增加百分之几相同的还有“多百分之几”“提高百分之几”“增长百分之几”等。

与减少百分之几相同的还有“少百分之几”“降低百分之几”“节约百分之几”等。

百分数应用题

第4篇 小升初分数与百分数的应用知识要点总结

小升初分数与百分数的应用知识要点总结

基本概念与性质:

分数:把单位“1”平均分成几份,表示这样的一份或几份的数。

分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

分数单位:把单位“1”平均分成几份,表示这样一份的数。

百分数:表示一个数是另一个数百分之几的数。

常用方法:

①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。

②对应思维方法:找出题目中具体的`量与它所占的率的直接对应关系。

③转化思维方法:把一类应用题转化成另一类应用题进行解答。最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。常见的处理方法是确定不同的标准为一倍量。

④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。

⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。有以下三种情况:a、分量发生变化,总量不变。b、总量发生变化,但其中有的分量不变。c、总量和分量都发生变化,但分量之间的差量不变化。

⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。

⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。

⑧浓度配比法:一般应用于总量和分量都发生变化的状况。

第5篇 小升初备考:分数百分数知识点总结

小升初备考:分数百分数知识点总结

分数真分数、假分数

一、把单位1平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,是这个分数的分数单位。

二、两个数相除,它们的商可以用分数表示。即:ab=b/a(b0)

三、小数和分数的意义可以看出,小数实际上就是分母是10、100、1000的分数。

四、分数可以分为真分数和假分数。

五、分子小于分母的分数叫做真分数。真分数小于1。

六、分子大于或等于分母的分数叫做假分数。假分数大于或等于1。

七、分子和分母只有公因数1的分数叫做最简分数。

八、分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。

九、小数的性质和分数的基本性质一致的,应用分数的基本性质,可以通分和约分。

百分数税率、利息、折扣、成数

一、表示一个数是另一个数的'百分之几的数叫做百分数。百分数也叫百分率或百分比,百分数通常用%表示。

二、分数与百分数比较:

三、分数、小数、百分数的互化。

(1)把分数化成小数,用分数的分子除以分母。

(2)把小数化成分数,先改写成分母是10、100、1000的分数,再约分。

(3)把小数化成百分数,先把小数点向右移动两位,然后添上百分号。

(4)把百分数化成小数,先去掉百分号,然后把小数点向左移动两位。

(5)把分数化成百分数,先把分数化成小数(除不尽时通常保留三位小数),再把小数化成百分数。

(6)把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

四、熟记常用三数的互化。

五、

1、出勤率表示出勤人数占总人数的百分之几。

2、合格率表示合格件数占总件数的百分之几。

3、成活率表示成活棵数占总棵数的百分之几。

六、求一个数比另一个数多百分之几,就是求一个数比另一个数多的占另一个数的百分之几。

七、1、多的1=多百分之几2、少的1=少百分之几

八、应得利息是税前利息,实得利息是税后利息。

九、利息=本金利率时间

十、应得利息-利息税=实得利息

十一、几折表示十分之几,表示百分之几十;几几折表示十分之几点几,表示百分之几十几。

十二、

1、原价折扣=现价

2、现价原价=折扣

3、现价折扣=原价

十三、几成表示十分之几表示百分之几十;几成几表示十分之几点几,表示百分之几十几。

第6篇 六年级数学上册百分数知识点总结

六年级数学上册百分数知识点总结

(一)百分数的基本概念

1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

百分数表示两个数之间的比率关系,不表示具体的数量,所以百分数不能带单位。

2.百分数的意义:表示一个数是另一个数的百分之几。

例如:25%的意义:表示一个数是另一个数的25%。

3.百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。

4.小数与百分数互化的规则:

把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;

把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

5.百分数与分数互化的规则:

把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数;

把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

(二)百分数应用题

百分数应用题(一)

求增加百分之几?减少百分之几?

公式:增加百分之几=增加的部分÷单位1

减少百分之几=减少的部分÷单位1

例如:1、45立方厘米的水结成冰后,冰的体积为50立方厘米,冰的.体积比原来水的体积增加百分之几?

解题思路:根据公式增加百分之几=增加的部分÷单位1,先确定单位1是水,已经知道是45:增加的部分不知道,可以利用50减45求得5;最后用增加的部分5÷单位1水的45就等于增加百分之几。

计算步骤:第一步:单位1:水:45立方厘米

第二步:增加的部分:50—45=5立方厘米

第三步:增加百分之几:5÷45=11.1%

2、45立方厘米的水结成冰后,体积增加了5立方厘米,冰的体积比原来水的体积增加百分之几?

解题思路:根据公式增加百分之几=增加的部分÷单位1,先确定单位1是水,已经知道是45:增加的部分是5立方厘米;最后用增加的部分5÷单位1水的45就等于增加百分之几。

计算步骤:第一步:单位1:水:45立方厘米

第二步:增加的部分: 5立方厘米

第三步:增加百分之几:5÷45=11.1%

3、水结成冰后,体积增加了5立方厘米,冰的体积为50立方厘米,冰的体积比原来水的体积增加百分之几?

解题思路:根据公式增加百分之几=增加的部分÷单位1,先确定单位1是水,不知道但可以根据题目“水结成冰后,体积增加了5立方厘米”知道水是少的,冰是多的,所以可以用50—5求出水是45立方厘米。加的部分是5立方厘米;;最后用增加的部分5÷单位1水的45就等于增加百分之几。

计算步骤:第一步:单位1:水:50—5=45立方厘米

第二步:增加的部分: 5立方厘米

第三步:增加百分之几:5÷45=11.1%

4、“减少百分之几与增加百分之几”的解题方法完全相同。

5、与增加百分之几相同的还有“多百分之几”“提高百分之几”

“增长百分之几“等。

与减少百分之几相同的还有“少百分之几”“降低百分之几”“节约百分之几”等。

百分数应用题(二)

比一个数增加百分之几的数,比一个数减少百分之几的数。

例如1、矣得小学去年有80名学生,今年的学生人数比去年增加了25%,今年有多少名学生?

解题思路:单位1去年已经知道用乘法,增加用(1+25%)

算式:80×(1+25%)

2、矣得小学去年有80名学生,今年的学生人数比去年减少了25%,今年有多少名学生?

解题思路:单位1去年已经知道用乘法,减少用(1-25%)

算式:80×(1-25%)

3、矣得小学今年有100名学生,比去年增加了25%,去年有多少名学生?

解题思路:单位1去年不知道用除法,增加用(1+25%)

算式:100÷(1+25%)

4、矣得小学今年有100名学生,比去年减少了25%,去年有多少名学生?

解题思路:单位1去年不知道用除法,增加用(1-25%)

算式:100÷(1-25%)

百分数应用题(三)列方程解百分数应用题

1、小明看一本书,第一天看了全书的25%,第二天看了全书的20%,第一天比第二天多看20页,这本书一共有多少页?

解题思路:单位1一本书不知道,可以选用方程或除法来解答。

根据“第一天比第二天多看20页”可以知道第一天是多的,第二天是少的,第一天减去第二天等于多出的20页。

等量关系式:第一天—第二天=20页

方法1:解:设这本书一共有x页。

由“第一天看了全书的25%”可以知道第一天等于全书乘以25%,用x可以表示为25%x,由“第二天看了全书的20%”可以知道第二天等于全书乘以20%,用x可以表示为20%x.依据等量关系式“第一天—第二天=20页”可以列方程为:25%x—20%x=20

方法2:“第一天比第二天多看20页”可以知道20页是第一天和第二天的差。要求单位1只要用20页除以20页的对于分率。

列算式为:20÷(25%—20%)

2、小明看一本书,第一天看了全书的25%,第二天看了全书的20%,两天共看了20页,这本书一共有多少页?

等量关系式:由“两天共看了20页”可以知道第一天+等二天=20页。

方程法:解:设这本书共有x页,则第一天为25%x,第二天为20%x。

方程列为:25%x+20%x=20

算术法:由“两天共看了20页”可以知道20页是第一天和第二天的和,要求单位1只要用20页除以20页的对于分率。

列算式为:20÷(25%+20%)

3、小明看一本书,第一天看了全书的25%,第二天看了全书的20%,还剩20页,这本书一共有多少页?

等量关系式:一本书—第一天—第二天=20页

方程法:解设这本书一共有x页,则第一天为25%x,第二天为20%x。

列方程为:x—25%x—20%x=20

算术法:20÷(1- 25%x- 20%)

4、小明看一本书,第一天看了全书的25%,第二天比第一天多看10页,还剩20页,这本书一共有多少页?

方程法:解设这本书一共有x页,则第一天为25%x,第二天为(25%x+10)页。

列方程为:x—25%x—(25%x+10)=20

百分数应用题(四)利息的计算

1.本金:存入银行的钱叫做本金。

2.利息:取款时银行多支付的钱叫做利息。

利息=本金×利率×时间

3.2008年10月9日以前国家规定,存款的利息要按20%的税率纳税。国债的利息不纳税。2008年10月9日以后免收利息税。所以如无特殊说明,就不在计算利息税。

4.利率:利息与本金的比值叫做利率。

5.银行存款税后利息的计算公式:税后利息=利息×(1-20%)

6.国债利息的计算公式:利息=本金×利率×时间

7.本息:本金与利息的总和叫做本息。

8.应纳税额:缴纳的税款叫应纳税额。

9.税率:应纳税额与各种收入的比率叫做税率。

10.应纳税额的计算:应纳税额=各种收入×税率

例如:李老师把2000元钱存入银行,整存整取五年,年利率按4.14%计算,到期时,李老师的本金和利息共有多少元?

解题思路:要求“本金和利息共有多少元”应该用本金的2000元加上利息的。

解题步骤:第一步:根据“利息=本金×利率×时间”算利息

利息:2000×4.14%×5=414元

第二步:本金+利息:2000+414=2414元。

例如:李老师把2000元钱存入银行,整存整取五年,年利率按4.14%计算,到期时,李老师的本金和利息共有多少元?(如果利息按20%来上税)

解题思路:要求“本金和利息共有多少元”应该用本金的2000元加上利息的。

解题步骤:第一步:根据“利息=本金×利率×时间”算利息

利息:2000×4.14%×5=414元

第二步:算税后利息:414×(1—20%)=331.2元

本金+利息:2000+331.2=233.2元。

第7篇 小学六年级奥数计算分数和百分数知识点总结

分数

1分数的意义

把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

2分数的分类

真分数:分子比分母小的分数叫做真分数。真分数小于1。

假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。

带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

3约分和通分

把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。分子分母是互质数的分数,叫做最简分数。

把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

百分数

表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率

或百分比。百分数通常用“%”来表示。百分号是表示百分数的符号。

第8篇 小升初数学分数和百分数的知识总结

小升初数学分数和百分数的知识总结

1、分数加减法应用题:

分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。

2、分数乘法应用题:

是指已知一个数,求它的几分之几是多少的应用题。

特征:已知单位“1”的量和分率,求与分率所对应的实际数量。

解题关键:准确判断单位“1”的量。找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。

3、分数除法应用题:

求一个数是另一个数的几分之几(或百分之几)是多少。

特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,也就是求他们的`倍数关系。

解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位一”,谁和单位一的量作比较,谁就作被除数。

甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。

甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数 。

已知一个数的几分之几(或百分之几 ) ,求这个数。

特征:已知一个实际数量和它相对应的分率,求单位“1”的量。

解题关键:准确判断单位“1”的量把单位“1”的量看成x根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际数量。

4、出勤率发芽率=发芽种子数/试验种子数×100%

小麦的出粉率= 面粉的重量/小麦的重量×100%

产品的合格率=合格的产品数/产品总数×100%

职工的出勤率=实际出勤人数/应出勤人数×100%

5、工程问题:

是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

解题关键:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况,灵活运用公式。

数量关系式:

工作总量=工作效率×工作时间 ;工作效率=工作总量÷工作时间

工作时间=工作总量÷工作效率 ;工作总量÷工作效率和=合作时间

6、纳税

纳税就是把根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

缴纳的税款叫应纳税款。

应纳税额与各种收入的(销售额、营业额、应纳税所得额 ……)的比率叫做税率。

利息

存入银行的钱叫做本金。

取款时银行多支付的钱叫做利息。

利息与本金的比值叫做利率。

利息=本金×利率×时间

第9篇 小学奥数知识点总结:分数与百分数的应用

分数与百分数的应用

基本概念与性质:

分数:把单位“1”平均分成几份,表示这样的一份或几份的数。

分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

分数单位:把单位“1”平均分成几份,表示这样一份的数。

百分数:表示一个数是另一个数百分之几的数。

常用方法:

①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。

②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。

③转化思维方法:把一类应用题转化成另一类应用题进行解答。最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。常见的处理方法是确定不同的标准为一倍量。

④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。

⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。有以下三种情况:a、分量发生变化,总量不变。b、总量发生变化,但其中有的分量不变。c、总量和分量都发生变化,但分量之间的差量不变化。

⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。

⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。

⑧浓度配比法:一般应用于总量和分量都发生变化的状况。

第10篇 百分数知识点的学习总结

百分数知识点的学习总结

百分数知识点总结

1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数,百分数也叫做百分率或百分比。

百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称。

例如:25%的意义:表示一个数是另一个数的25%。

2.百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。

3.小数与百分数互化的规则:

把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;(加向右)

把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。(去向左)

4.百分数与分数互化的规则:

把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数;

把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

5、常用的分数、小数及百分数的'互化

6.百分率公式:求百分率就是求一个数是另一个数的百分之几。(算式要加×100%,包括浓度、利润率)

百分数的意义

如果要真正地理解百分数的意义和正确地使用它是存在着许多的问题。虽然大多数人都知道百分数,但是在平时生活中却似乎不常使用分数,实际上只要细心就会发现,其实生活中处处存在着百分数的例子比如超市的折扣就是百分数的应用。初中教育的考试测试中,虽然不是直接地对百分数的意义进行考察,但是,运用各种题型,掌握各种类型的百分数的题目,并且能真正地运用它,是非常重要的。下面进行简单的描述。

百分数的意义是能在生产生活中能将事物占总体的比例形容的更加完整,让省去许多不必要的言语,简易而恰当。下面有几种情况值得了解。

举例来说:(一),百分数虽然是以100为分母,但是分子的数也可以大于100的。这是很多人不了解的,以为分子大于100是不可能的,但是却是确确实实存在的。如200%表示的是原本数字的2倍关系。举例子来说:一个书店上半年的存利润是10万元,而下半年的存利润是12万元,那么则可以表示成“上半年存利润比下半年的存利润增加20%即120%”。

(二)百分数有时也会造成误会,这就要我们认真地去区分。例如:不少人认为一个百分比的上升会被相同下降的百分比所消。举一个例子来说: 10增加50%,就等于10+5=15,,而如果从15下降50%则为15-7.5=7.5.最终的结果是小于10.这样的误区是因为不了解百分数的意义。

总的来说,掌握了百分数的意义是什么对做题和生活算数都有帮助,对于一些概念的掌握不是单纯的死记硬背,而要真正地了解它。那么怎样才能真的了解它?就只有细心的去分析百分数的具体应用,多做这方面的练习,从而更多的了解百分数在生活中的具体应用,然后熟练描述生活中涉及百分数的事件,这样才能变得不再是百分数的未知者,从而对百分数的意义了解的更加透彻。

百分数总结10篇

小升初数学分数和百分数的知识总结1、分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分…
推荐度:
点击下载文档文档为doc格式

百分数相关文章

  • 百分数总结10篇
  • 百分数总结10篇51人关注

    小升初数学分数和百分数的知识总结1、分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知 ...[更多]

  • 百分数知识点总结5篇
  • 百分数知识点总结5篇40人关注

    小升初备考:分数百分数知识点总结分数真分数、假分数一、把单位1平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,是这个分数的分数单位。二、 ...[更多]

总结范文热门信息