第1篇 幂函数定义与性质知识点总结
幂函数定义与性质知识点总结
定义:
形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:
当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域
性质:
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的.特性:
首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是r,如果q是偶数,函数的定义域是[0,+)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x0,函数的定义域是(-,0)(0,+).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
排除了为0与负数两种可能,即对于x0,则a可以是任意实数;
排除了为0这种可能,复习方法,即对于x0和x0的所有实数,q不能是偶数;
排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
第2篇 幂函数的知识点总结
幂函数的知识点总结
幂函数定义:
形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:
当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的.实数。而只有a为正数,0才进入函数的值域
性质:
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是r,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
排除了为0与负数两种可能,即对于x0,则a可以是任意实数;
排除了为0这种可能,即对于x0和x0的所有实数,q不能是偶数;
排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:
如果a为任意实数,则函数的定义域为大于0的所有实数;
如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.
可以看到:
(1)所有的图形都通过(1,1)这点。
(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。
(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。
(4)当a小于0时,a越小,图形倾斜程度越大。
(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。
(6)显然幂函数无界。
第3篇 幂函数的性质知识点总结
幂函数的性质知识点总结
幂函数的性质知识点总结
形如y=x^a(a为常数)的函数,即以底数为自变量 幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:
当a为不同的数值时,幂函数的定义域的不同情况如下: 如果a为任意实数,则函数的定义域为大于0的所有实数; 如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。 当x为不同的数值时,幂函数的值域的不同情况如下: 在x大于0时,函数的值域总是大于0的实数。 在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。 而只有a为正数,0才进入函数的'值域
性质:
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是r,如果q是偶数,函数的定义域是[0,+)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x0,函数的定义域是(-,0)(0,+).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
排除了为0与负数两种可能,即对于x0,则a可以是任意实数;
排除了为0这种可能,即对于x0和x0的所有实数,q不能是偶数;
排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:
如果a为任意实数,则函数的定义域为大于0的所有实数;
如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。
在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.
可以看到:
(1)所有的图形都通过(1,1)这点。
(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。
(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。
(4)当a小于0时,a越小,图形倾斜程度越大。
(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。
(6)显然幂函数无界。
第4篇 高一数学幂函数知识点总结
高一数学幂函数知识点总结
定义:
形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:
当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的'所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域
性质:
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是r,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
排除了为0与负数两种可能,即对于x>;0,则a可以是任意实数;
排除了为0这种可能,即对于x<0和x>;0的所有实数,q不能是偶数;
排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:
如果a为任意实数,则函数的定义域为大于0的所有实数;
如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.
可以看到:
(1)所有的图形都通过(1,1)这点。
(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。
(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。
(4)当a小于0时,a越小,图形倾斜程度越大。
(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。
(6)显然幂函数无界。
第5篇 高一数学知识点幂函数的总结
高一数学知识点关于幂函数的总结
幂函数定义:
形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:
当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域。
性质:
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是r,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
排除了为0与负数两种可能,即对于x>;0,则a可以是任意实数;
排除了为0这种可能,即对于x<0和x>;0的所有实数,q不能是偶数;
排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:
如果a为任意实数,则函数的定义域为大于0的所有实数;
如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况。
可以看到:
(1)所有的图形都通过(1,1)这点。
(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。
(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。
(4)当a小于0时,a越小,图形倾斜程度越大。
(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。
(6)显然幂函数无界。
趣谈平分
把饼那样的物体分成2等份,可以采用一个人切而让另一个人挑的办法,这样分的优点是很明显的。在第一个人看来,他必须把饼分成他认为价值相等的两部分,才能保证得到他应得的那一部分;而第二个人只要选取价值大的那一部分,或在两部分价值相等的情况下任选其中一部分,就能保证他得到他至少应得的那一部分。在这里,我们假定物体具有在分割时不会损失它的总价值。
若要把一个物体分成3或若干等份,我们可以采用这样的方法:这里以5个人分配来说明,对于任意多个分配者,分法大致是相同的。我们把这5个人叫做甲、乙、丙、丁、戊。甲有权利从饼上割下任一部分;乙有把甲所割出的一块减少的自由,但没有人强迫他这样做;然后丙又有减少这一块的自由,这样继续下去。假定最后是戊接触这块饼,那么由戊拿走这块饼,然后把剩余的饼在甲乙丙丁四人之间平分。第二轮可一用同样的步骤把参加的人数减少到三,以此分配下去。现在我们来看,每一个参加分配的`人应如何做才能保证自己应得的那一部分归自己。在第一轮甲割下它认为值1/5的一块后,很可能没有人再去碰它而甲就达到值1/5的那一部分;在这种情况下,他没有做错。然而,如果有另一个或几个人减少了这块饼,那么最后接触到他的人就要得到它,所以甲当然认为价值超过/5的饼被留下由4个人平分,而他是这4个人中的一个。在第二轮甲照前面的办:如果他仍就是第一个,那么他割下认为有余下部分1/4价值的那一块。这个策略还不完全,我们还应指出一个分配者在他不是第一时应怎样做。假定乙认为甲所个下的部分太大,也就是比他估计的整个饼的1/5大了,那么他只要把它减少到他认为适当的大小;如果他成为最后一个减少这部分饼的人,他就得到了它,而且并没有做错,如果他没有得到它,那是因为在乙以后又有别的人接触了它。因而在乙以后的减小者中有一人要得到被乙认为是价值小于1/5的一块饼,所以乙在下一轮将参加分配他认为价值大于原来4/5的部分。现在方法就清楚了:如果你在任一轮中是n个分配者的第一个,那么不论放在你面前的是整个饼还是余下的部分,你总应该割下你认为价值时这部分饼的1/n的一块;如果你在这一轮中不是第一个,而且你看到由别人割下的一块比你估计的那部分饼的1/n大,那你就把它减小到1/n;如果割下的你估计的那部分饼的1/n小,那你就不要动它。这个方法保证每一个人得到他认为是应得的部分。 高中地理
在经济生活中,存在着另一种分配问题:分配的是不能分割的物体,如房子、家畜、家具、汽车、艺术品等。例如一笔遗产,包括:一座房子、一座磨坊和一辆汽车,要在享有同等继承权的四个继承人甲乙丙丁之间分配,需要一个公正人,请读者想一想,应如何去做?
高中数学再次梳理知识
1、再次梳理知识,及时查漏补缺
这阶段,许多考生备考状况是杂乱无章,没有头绪,心中无底,忐忑不安,效率低下。其实最需做的仍是梳理知识网,查漏补缺。一般来说,在梳理过程中难免会遇到不是很明白的地方,这时需翻书对照,防止概念错误。另外,要进行重要和典型问题的解题方法的归纳,只有这样才能以不变应万变,这里要注意各种方法的适用范围,防止只是形式的简单套用导致原理错误,比如在做数列问题时不要简单套用连续函数的性质,注意离散和连续函数的区别。
2、适量模拟练习,保持临考状态
考前50天一定要有针对性进行套卷训练,一是通过模拟可以查漏补缺,二是提高应试能力,包括答题技巧,心理调节。建议大家练几套有标准答案和评分标准的模拟卷(包括近几年高考卷),并且自批自改,在模拟练习时一定要了解评分标准,对照评分标准自我修正,提高得分的机会,力争减少无谓的失分,保证会做的不错不扣分,即使不完全会做,也应理解多少做多少,增加得分机会。
3、全科规划意识,突破偏文学科
冲刺阶段,一定要有全科规划意识,高考是看总分的,不管是强势学科还是弱势学科都要有相应的时间分配计划,做到重点学科重点突破。实践表明后期在记忆性学科上多下功夫,会立竿见影,象语文,英语,文综,生物等,考生应向这些学科适当倾斜。但是思维性强的学科,如数学,物理,若几天不做会上手慢,出错率高,因此在后期也应该安排一定的时间去做去练,保持一个良好的临考状态。
4、调整心理状态,争取笑到最后
高考临近,有些考生精神过度紧张,甚至病倒。因此提醒大家,防止两个极端的做法,一是彻底放松,破坏了长期形成的生物钟,会适得其反。另一个就是挑灯夜战,加班加点,导致考前过度疲劳,临考时打不起精神。建议考生,休息调整是必要的,但必须的是微调,特别要把兴奋状态逐步调整到上午9:00——11:30,下午3:00——5:00。高考前还要注意饮食的科学性和规律性,不能大吃大喝,宜清淡又要保证全面营养,总之,生活有节奏,亦张亦弛,保持心态平稳。同时考前保持必胜的信心是非常必要的,走进考场要信心百倍,即使遇到困难也不要慌张,自我暗示,及时调整,只要大家精心准备,充满自信,沉着应战,就一定能笑到最后!
三角函数的性质及三角恒等变形
一. 本周教学内容:三角函数的性质及三角恒等变形
考点梳理
一、本章内容
1. 角的概念的推广,弧度制.
2. 任意角的三角函数、单位圆中的三角函数、同角三角函数的基本关系、正弦、余弦的诱导公式.
3. 两角和与差的正弦、余弦、正切,二倍角的正弦、余弦、正切.
4. 正弦函数、余弦函数的图像和性质、周期函数、函数y=asin(ωx )的图像、正切函数的图像和性质、已知三角函数值求角.
5. 余弦定理、正弦定理.利用余弦定理、正弦定理解斜三角形.
二、本章考试要求
1. 理解任意角的概念、弧度制的意义,并能正确地进行弧度和角度的换算.
2. 掌握任意角的三角函数的定义,了解余切、正割、余割的定义,掌握同角三角函数的基本关系,掌握正弦、余弦的诱导公式,了解周期函数和最小正周期的意义,了解奇函数、偶函数的意义.
3. 掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式.
4. 能正确地运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.
5. 了解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y= asin(ωx )的简图,理解a、ω、 的意义.
6. 会由已知三角函数值求角,并会用符号
命题研究
分析近五年的全国,有关三角函数的内容平均每年有25分,约占17%.的内容主要有两方面;其一是考查三角函数的性质和图象变换;尤其是三角函数的最大值、最小值和周期,题型多为选择题和填空题;其二是考查三角函数式的恒等变形,如利用有关公式求值,解决简单的综合问题,除了在填空题和选择题中出现外,解答题的中档题也经常出现这方面的内容,是命题的一个常考的基础性的题型.其命题热点是章节内部的三角函数求值问题,命题新趋势是跨章节的学科综合问题.的走势,体现了新课标的理念,突出了对创新的考查.
如:福建卷的第17题设函数 ,
(2)若函数 的图象按向量 平移后得到函数 的图象,求实数 的值.此题“重视拓宽,开辟新领域”,将三角与向量交汇.
策略
三角函数是传统知识内容中变化最大的一部分,新教材处理这一部分内容时有明显的降调倾向,突出“和、差、倍角公式”的作用,突出正、余弦函数的主体地位,加强了对三角函数的图象与性质的考查,因此三角函数的性质是本章复习的重点.第一轮复习的重点应放在课本知识的重现上,要注重抓基本知识点的落实、基本的再认识和基本技能的掌握,力求系统化、条理化和网络化,使之形成比较完整的知识体系;第二、三轮复习以基本综合检测题为载体,综合试题在形式上要贴近高考试题,但不能上难度.当然,这一部分知识最可能出现的是“结合实际,利用少许的三角变换(尤其是余弦的倍角公式和特殊情形下公式的应用)来考查三角函数性质”的命题,难度以灵活掌握倍角的余弦公式的变式运用为宜.由于三角函数解答题是基础题、常规题,属于容易题的范畴,因此,建议三角函数的复习应控制在课本知识的范围和难度上,这样就能够适应未来高考命题趋势.总之,三角函数的复习应立足基础、加强训练、综合应用、提高能力.
解答三角函数高考题的一般策略:
(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”.
(2)寻找联系:运用相关三角公式,找出差异之间的内在联系.
(3)合理转化:选择恰当的三角公式,促使差异的转化.
三角函数恒等变形的基本策略:
(1)常值代换:特别是用“1”的代换,如1=cos2θ sin2θ=tanx?cotx=tan45°等.
(2)项的分拆与角的配凑.如分拆项:sin2x 2cos2x=(sin2x cos2x) cos2x=1 cos2x;配凑角:α=(α β)-β,β= - 等.
(3)降次,即二倍角公式降次.
(4)化弦(切)法.将三角函数利用同角三角函数基本关系化成弦(切).
(5)引入辅助角.asinθ bcosθ= sin(θ ),这里辅助角 所在象限由a、b的符号确定, 角的值由tan = 确定.
典型例题分析与解答
例1、
解法二:(从“名”入手,异名化同名)
的图像过点 ,且 的最大值为 的解析式;(2)由函数 图像经过平移是否能得到一个奇函数解析:(1) ,解得 ,
所以 ,将 的图像,再向右平移 单位得到 的图像先向上平移1个单位,再向右平移 单位就可以得到奇函数点评:本题考查的是三角函数的图象和性质等基础知识,这是高考命题的重点内容,应于以重视.
例3、为使方程 内有解,则 的取值范围是( )
分析一:由方程形式,可把该方程采取换元法,转化为二次函数:设sinx=t,则原方程化为 ,于是问题转化为:若关于 的一元二次方程 上有解,求 的取值范围,解法如下:
分析二: 上的值域.
解法如下:
点评:换元法或方程思想也是高考考查的重点,尤其是计算型试题.
例4、已知向量 的值.
所以 ;
(2) ,所以 ,所以 ,所以点评:本小题主要考查平面向量的概念和计算,三角函数的恒等变换的基本技能,着重考查数学运算能力.平面向量与三角函数结合是高考命题的一个新的亮点.
例5、已知向量 ,向量 ,且 ,
(1)求向量 与向量 的夹角为 ,向量 为 依次成等差数列,求 的取值范围.
解析:(1)设 ,由 ,有 ①
向量 ,有 ,则 ②
由①、②解得:
(2)由 垂直知 ,
由 ,则 ,
例6、如图,某园林单位准备绿化一块直径为bc的半圆形空地,△abc外的地方种草,△abc的内接正方形pqrs为一水池,其余的地方种花.若bc=a,∠abc=
(1)用a, 变化时,求 取最小值时的角解析:(1) ,则
固定,
令
函数 在 上是减函数,于是当 .
点评:三角函数有着广泛的应用,本题就是一个典型的范例.通过引入角度,将图形的语言转化为三角函数的符号语言,再将其转化为我们熟知的函数 的图象的一条对称轴方程是( )
a.
c. d.
2、下列函数中,以 为周期的函数是( )
a.
b.
d.
3、已知 等于( )
a.
4、已知 b.
c. d.
5、函数a、 b、 c、 d、
6、如图,半径为2的⊙m切直线ab于o点,射线oc从oa出发绕着o点顺时针方向旋转到ob.旋转过程中,oc交⊙m于p,记∠pmo为x,弓形pno的面积为 ,那么 的图象是( )
7、tan15°-cot15°=( )
a. 2 b. c. 4 d.
8、给出下列的命题中,其中正确的个数是( )
(1)存在实数α,使sinαcosα=1;
(2)存在实数α,使sinα cosα= ;
(3) 的值域为( )
a. b. c. 在下面哪个区间内是增函数( )
a. c.
11、若点p ]内
d.
12、定义在r上的函数 即是偶函数又是周期函数,若 的最小正周期是 ,且当 ,则 b. c.
二、填空题
13、 ,且当p点从水面上浮现时开始计算时间,有以下四个结论:
; ,则其中所有正确结论的序号是 .
15、给出问题:已知 ,试判定 ,去分母整理可得 , .故 ,
(1)求函数 的奇偶性.
18、(1)已知: ,求证: 的最小值为0,求x的集合.
20、在 所对的边分别为 ,
(1)求 ,求 的最大值.
21、已知向量 ,函数 的周期为 ,当22、如图,足球比赛场的宽度为a米,球门宽为b米,在足球比赛中,甲方边锋沿球场边线,带球过人沿直线向前推进.试问:该边锋在距乙方底线多远时起脚射门可命中角的正切值最大?(注:图中表示乙方所守球门,所在直线为乙方底线,只考虑在同一平面上的情形).
试题答案
1、a 2、d 3、a 4、a 5、a 6、a
7、d 8、b 9、b 10、d 11、b 12、d
13、
17、解:(1) ,
定义域:r,最小正周期为 ;
(2) ,且定义域关于原点对称,
所以
(2)
当 ,
当
19、解: ,因为 ,有 ,
亦即 ,由 ,
解得 ,
当 ,最大值为0,不合题意,
当 ,最小值为0,
当 时,x的集合为:
(2) ,又 时, ,故 的最大值是 .
21、解:(1) 且最大值为1,所以 由 ;
(2)由(1)知,令 所以 是 的对称轴.
22、解:以l为x轴,d点为坐标原点,建立直角坐标系,
设ab的中点为m,则根据对称性有
设动点c的坐标为 ,记 ,
当且仅当 ,
故该边锋在距乙方底线 时起脚射门可命中角的正切值最大.
高一数学学习:集合大小定义的基本要求三
不过作为集合大小的定义,我们希望能够比较任意两个集合的大小。所以,对于任何给定的两个集合a和b,或者a比b大,或者b比a大,或者一样大,这三种情况必须有一种正确而且只能有一种正确。这样的偏序关系被称为“全序关系”。
最后,新的定义必须保持原来有限集合间的大小关系。有限集合间的大小关系是很清楚的,所谓的“大”,也就是集合中的元素更多,有五个元素的集合要比有四个元素的集合大,在新的扩充了的集合定义中也必须如此。这个要求是理所当然的,否则我们没有理由将新的定义作为老定义的扩充。
经过精心的整理,有关“高一数学学习:集合大小定义的基本要求三”的内容已经呈现给大家,祝大家学习愉快!
学好高中数学也需阅读积累
阅读,在语文中要抓住精炼的或生动形象的词与句,而在数学中,则应抓住关键的词语。比如在初二课本第一学期第21章第五节反比例函数性质的第一条:“当k>;0时,函数图像的两个分支分别在第一、三象限内,在每个象限内,自变量x逐渐增大时,y的值则随着逐渐减小。&rdquo 高中历史;这句话中,关键词语是“在每个象限内”,反比例函数的图像为双曲线,而这个性质是对于其中某一分支而言,并不是对整个函数来说的。所以在做题时,应注意到这一点。从这一实例来看,我们不难发现阅读时抓住关键词语的重要性。
积累,在语文中有利于写作,在数学中有利于解题。积累包括两方面:一、概念知识,二、错误的题目。脑子中多一些概念就多了一些思考的方法,多了一些解题的突破口,在做较难的题目时,也就得心应手了。积累错误的题目,指挑选一些自己平时易错或难懂的题目,记在本子上,在复习时,翻看这本本子就能更加清楚地了解自己在哪些方面还有所欠缺,应特别注意。所以积累对学好数学起着极大的作用。
自主复习最好各科交替进行
大部分区县都将实行全区统考,并将考生成绩进行大排队。这次考试将成为考生填报高考志愿的重要参考依据。考生对此非常重视。元旦假期,不少考生计划把时间都用来补习薄弱科目。
北京老师王梅生建议,在重点复习薄弱学科的同时,考生也要兼顾其他科目。不要在一大段时间内把精力全部用在某一科目上,这样容易造成头脑疲劳,影响复习效果。考生最好将各科交替进行,文理科兼顾,强弱科相间,单科与综合科目结合进行。
此外,考生最好将各科复习时间安排得与考试时间同步。比如,考试第一天上午考语文,下午考数学,第二天上午考综合,下午考英语。考生这几天最好上午复习语文与综合,下午复习数学与英语,这样有利于在相应的时间对相应科目产生兴趣,提高兴奋点。
提醒注意的是,考生在考前这几天,不要打乱原有的生物钟,尽量别开夜车复习,并注意把学习与休息相结合,保证8小时睡眠和适度体育锻炼。这样才能精力充沛,保证复习效果。
第6篇 高一数学第2章指数函数对数函数和幂函数知识点总结
一、指数函数
指数函数是数学中重要的函数。应用到值e上的这个函数写为exp(x)。还可以等价的写为ex,这里的e是数学常数,就是自然对数的底数,近似等于 2.718281828,还称为欧拉数。
二、对数函数
对数公式是数学中的一种常见公式,如果a^x=n(a>0,且a≠1),则x叫做以a为底n的对数,记做x=log(a)(n),其中a要写于log右下。
三、幂函数
一般地,形如y=xα(α为实数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。例如函数y=x0 、y=x1、y=x2、y=x-1(注:y=x-1=1/x y=x0时x≠0)等都是幂函数。
第7篇 高一数学必修一知识点总结:幂函数的性质考点
高一数学必修1知识点总结:幂函数的性质考点
定义:
形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:
当a为不同的数值时,幂函数的定义域的不同情况如下:
如果a为任意实数,则函数的定义域为大于0的所有实数;
如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:
在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域
性质:
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是r,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)。因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
排除了为0与负数两种可能,即对于x>;0,则a可以是任意实数;
排除了为0这种可能,即对于x<;0和x>;0的所有实数,q不能是偶数;
排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:
如果a为任意实数,则函数的定义域为大于0的所有实数;
第8篇 高一数学重要知识点总结:幂函数
高一数学重要知识点总结:幂函数
幂函数定义:
形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:
当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域
性质:
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是r,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;
排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;
排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:
如果a为任意实数,则函数的定义域为大于0的所有实数;
如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.
可以看到:
(1)所有的图形都通过(1,1)这点。
(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。
(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。
(4)当a小于0时,a越小,图形倾斜程度越大。
(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。
(6)显然幂函数无界。