第1篇 数学一元二次方程公式定理的知识点总结
数学一元二次方程公式定理的知识点总结
1、平方与平方根
1。1面积与平方
(1)任意两个正数的和的平方,等于这两个数的平方和
(2)任意两个正数的差的平方,等于这两个数的平方和,再减去这两个数乘积的2倍
任意两个有理数的和(或差)的平方,等于这两个数的平方和,再加上(或减去)这两个数乘积的2倍
1。2平方根
1。正数有两个平方根,这两个平方根互为相反数;
2。零只有一个平方根,它就是零本身;
3。负数没有平方根
1。4实数
无限不循环小数叫做无理数
有理数和无理数统称为实数
2、平方根的运算
2。1算术平方根的性质
性质1一个非负数的算术平方根的平方等于这个数本身
性质2一个数的平方的算术平方根等于这个数的绝对值
2。2算术平方根的乘、除运算
1。算术平方根的乘法
sqrt(a)?sqrt(b)=sqrt(ab)(a>;=0,b>;=0)
2。算术平方根的除法
sqrt(a)/sqrt(b)=sqrt(a/b)(a>;=0,b>;0)
通过分子、分母同乘以一个式子把分母中的根号化去火把根号中的分母化去,叫做分母有理化
(1)被开方数的每个因数的指数都小于2;(2)被开方数不含有字母我们把符合这两个条件的平方根叫做最简平方根
2。3算术平方根的加、减运算
如果几个平方根化成最简平方根以后,被开方数相同,那么这几个平方根就叫做同类平方根
3、一元二次方程及其解法
3。1一元二次方程
只含有一个未知数,且未知数的`最高次数是2的方程,叫做一元二次方程
3。2特殊的一元二次方程的解法
3。3一般的一元二次方程的解法——配方法
用配方法解一元二次方程的一般步骤是:
1。化二次项系数为1用二次项系数去除方程两边,将方程化为x^2+px+q=0的形式
2。移项把常数项移至方程右边,将方程化为x^2+px=—q的形式
3。配方方程两边同时加上“一次项系数一半的平方”,是方程左边成为含有未知数的完全平方形式,右边是一个常数
4。有平方根的定义,可知
(1)当p^2/4—q>;0时,原方程有两个实数根;
(2)当p^2/4—q=0,原方程有两个相等的实数根(二重根);
(3)当p^2/4—q<0,原方程无实根
3。4一元二次方程的求根公式
一元二次方程ax^2+bx+c=0(a!=0)的求根公式:
当b^2—4ac>;=0时,x1,2=(—b(+,—)sqrt(b^2—4ac))/2a
3。5一元二次方程根的判别式
方程ax^2+bx+c=0(a!=0)
当delta=b^2—4ac>;0时,有两个不相等的实数根;
当delta=b^2—4ac=0时,有两个相等的实数根;
当delta=b^2—4ac<0时,没有实数根
3。6一元二次方程的根与系数的关系
以两个数x1,x2为根的一元二次方程(二次项系数为1)是x^2—(x1+x2)x+x1?x2=0
4、解应用问题
第2篇 苏科版初中数学公式定理总结
81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半
82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l×h
83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
第3篇 数学余割函数公式定理知识点总结
数学余割函数公式定理知识点总结
余割函数
对于任意一个实数x,都对应着唯一的角(弧度制中等于这个实数),而这个角又对应着唯一确定的余割值cscx与它对应,按照这个对应法则建立的函数称为余割函数。
记作f(x)=cscx
f(x)=cscx=1/sinx
1、定义域:{x|x≠kπ,k∈z}
2、值域:{y|y≤-1或y≥1}
3、奇偶性:奇函数
4、周期性:最小正周期为2π
5、图像:
图像渐近线为:x=kπ ,k∈z
其实有一点需要注意,就是余割函数与正弦函数互为倒数。
第4篇 初中数学公式定理总结
初中数学公式定理总结
1 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半
2 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l×h
3 (1)比例的基本性质 如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
4 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
5 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b
6 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例
7 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
8定理 如果一条直线截三角形的`两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
9 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
10 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
第5篇 初中数学正弦函数公式定理表总结
初中数学正弦函数公式定理表总结
初中数学正弦函数公式定理表
不管是什么样的数学公式要领,都有着其最初的定义和性质,正弦函数也不例外。
正弦函数
锐角正弦函数的定义
在直角三角形abc中,∠c=90°,ab是∠c的对边c,bc是∠a的对边a,ac是∠b的对边b 正弦函数就是sin a=a/c,即sin a=bc/ab.
定义与定理
定义:对于任意一个实数x都对应着唯一的角(弧度制中等于这个实数),而这个角又对应着唯一确定的正弦值sin x,这样,对于任意一个实数x都有唯一确定的值sin x与它对应,按照这个对应法则所建立的函数,表示为y=sin x,叫做正弦函数。
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 a/sin a=b/sin b=c/sin c
在直角三角形abc中,∠c=90°,y为一条直角边,r为斜边,x为另一条直角边(在坐标系中,以此为底),则sin a=y/r,r=√(x^2+y^2)
正弦函数是三角函数的一种,它同余弦函数是一对同胞兄弟。
初中数学正方形定理公式
关于正方形定理公式的内容精讲知识,希望同学们很好的掌握下面的内容。
正方形定理公式
正方形的特征:
①正方形的四边相等;
②正方形的四个角都是直角;
③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;
正方形的判定:
①有一个角是直角的菱形是正方形;
②有一组邻边相等的矩形是正方形。
希望上面对正方形定理公式知识的讲解学习,同学们都能很好的掌握,相信同学们会取得很好的成绩的哦。
初中数学平行四边形定理公式
同学们认真学习,下面是老师对数学中平行四边形定理公式的内容讲解。
平行四边形
平行四边形的性质:
①平行四边形的对边相等;
②平行四边形的对角相等;
③平行四边形的对角线互相平分;
平行四边形的判定:
①两组对角分别相等的四边形是平行四边形;
②两组对边分别相等的四边形是平行四边形;
③对角线互相平分的四边形是平行四边形;
④一组对边平行且相等的四边形是平行四边形。
上面对数学中平行四边形定理公式知识的讲解学习,同学们都能很好的掌握了吧,相信同学们会从中学习的更好的哦。
初中数学直角三角形定理公式
下面是对直角三角形定理公式的内容讲解,希望给同学们的学习很好的帮助。
直角三角形的'性质:
①直角三角形的两个锐角互为余角;
②直角三角形斜边上的中线等于斜边的一半;
③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);
④直角三角形中30度
角所对的直角边等于斜边的一半;
直角三角形的判定:
①有两个角互余的三角形是直角三角形;
②如果三角形的三边长a、b 、c有下面关系a^2+b^2=c^2
,那么这个三角形是直角三角形(勾股定理的逆定理)。
以上对数学直角三角形定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们都能考试成功。
初中数学等腰三角形的性质定理公式
下面是对等腰三角形的性质定理公式的内容学习,希望同学们认真看看。
等腰三角形的性质:
①等腰三角形的两个底角相等;
②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)
上面对等腰三角形的性质定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们在考试中取得很好的成绩。
初中数学三角形定理公式
对于三角形定理公式的学习,我们做下面的内容讲解学习哦。
三角形
三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;
三角形的内角和定理:三角形的三个内角的和等于180度;
三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;
三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;
三角形的三条角平分线交于一点(内心);
三角形的三边的垂直平分线交于一点(外心);
三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;
以上对三角形定理公式的内容讲解学习,希望同学们都能很好的掌握,并在考试中取得很好的成绩哦。
第6篇 2022初中奥数几何公式定理总结
一、
两圆外离 d﹥r+r
两圆外切 d=r+r
两圆相交 r-r﹤d﹤r+r(r﹥r)
两圆内切 d=r-r(r﹥r)
两圆内含d﹤r-r(r﹥r)
二、
相交两圆的连心线垂直平分两圆的公共弦
三、
把圆分成n(n≥3):
依次连结各分点所得的多边形是这个圆的内接正n边形
经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
四、
任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
五、
正n边形的每个内角都等于(n-2)×180°/n
正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
正n边形的面积sn=pnrn/2 p表示正n边形的周长
正三角形面积√3a/4 a表示边长
如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
六、
弧长计算公式:l=n∏r/180
扇形面积公式:s扇形=n∏r/360=lr/2
内公切线长= d-(r-r) 外公切线长= d-(r+r)
第7篇 高中数学三角函数公式定理记忆口诀总结
高中数学三角函数公式定理记忆口诀总结
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;
中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,
顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,
变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,
将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。条件等式的`证明,方程思想指路明。
万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;
1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;
三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;