第1篇 初中数学知识点总结之推理与证明
初中数学知识点总结之推理与证明
一、公理、定理、推论、逆定理:
1.公认的真命题叫做公理。
2.其他真命题的正确性都通过推理的方法证实,经过证明的真命题称为定理。
3.由一个公理或定理直接推出的定理,叫做这个公理或定理的推论。
4.如果一个定理的逆命题是真命题,那么这个逆命题就叫原定理的逆定理。
二、类比推理:
一道数学题是由已知条件、解决办法、欲证结论三个要素组成,这此要求可以看作是数学试题的属性。如果两道数学题是在一系列属性上相似,或一道是由另一道题来的',这时,就可以运用类比推理的方法,推测其中一道题的属性在另一道题中也存在相同或相似的属性。
三、证明:
1.对某个命题进行推理的过程称为证明,证明的过程包括已知、求证、证明
2.证明的一般步骤:
(1)审清题意,明确条件和结论;
(2)根据题意,画出图形;
(3)根据条件、结论,结合图形,写出已知求证;
(4)对条件与结论进行分析;
(5)根据分析,写出证明过程
3.证明常用的方法:综合法、分析法和反证法。
四、辅助线在证明中的应用:
在几何题的证明中,有时了为证明需要,在原题的图形上添加一些线度,这些线段叫做辅助线,常用虚线表示。并在证明的开始,写出添加过程,在证明中添加的辅助线可作为已知条件参与证明。
常见考法
(1)灵活运用基础知识进行推理,运用综合法、分析法,从条件和结论两方面出发进行证明;
(2)在中考中,考查类比推理,先设计一个条件、结论明确的问题,以此作为类比对象,然后再对其改造 。比如,图形的变式,添加某些新的属性或改变某些属性,通过与原有问题的比较,推测新问题的结论与解决方法。
误区提醒
(1)不能准确把握几何公理、定理的内容;
(2)数学语言、符号语言、文字语言在相互转化中出现表述错误。
第2篇 高中数学知识点总结:推理与证明重难点
高中数学知识点总结:推理与证明重难点
忽视数学的人是无法了解任何其他科学乃至世界上任何其他事物的。下面小编准备了推理与证明重难点的高中数学知识点,具体请看以下内容。
一、合情推理
1.归纳推理是由部分到整体,由个别到一般的推理,在进行归纳时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论;
2.类比推理是由特殊到特殊的推理,是两类类似的对象之间的推理,其中一个对象具有某个性质,则另一个对象也具有类似的性质。在进行类比时,要充分考虑已知对象性质的推理过程,然后类比推导类比对象的性质。
二、演绎推理
演绎推理是由一般到特殊的推理,数学的证明过程主要是通过演绎推理进行的,只要采用的演绎推理的大前提、小前提和推理形式是正确的',其结论一定是正确,一定要注意推理过程的正确性与完备性。
三、直接证明与间接证明
直接证明是相对于间接证明说的,综合法和分析法是两种常见的直接证明。综合法 一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法(或顺推证法、由因导果法)。分析法 一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法。
间接证明是相对于直接证明说的,反证法是间接证明常用的方法。假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫做反证法。
四、数学归纳法
数学上证明与自然数n有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立。
第3篇 2022中考数学知识点总结:推理与证明
知识点总结
一、公理、定理、推论、逆定理:
1.公认的真命题叫做公理。
2.其他真命题的正确性都通过推理的方法证实,经过证明的真命题称为定理。3.由一个公理或定理直接推出的定理,叫做这个公理或定理的推论。4.如果一个定理的逆命题是真命题,那么这个逆命题就叫原定理的逆定理。
二、类比推理:
一道数学题是由已知条件、解决办法、欲证结论三个要素组成,这此要求可以看作是数学试题的属性。如果两道数学题是在一系列属性上相似,或一道是由另一道题来的,这时,就可以运用类比推理的方法,推测其中一道题的属性在另一道题中也存在相同或相似的属性。
三、证明:
1.对某个命题进行推理的过程称为证明,证明的过程包括已知、求证、证明
2.证明的一般步骤:
(1)审清题意,明确条件和结论;
(2)根据题意,画出图形;
(3)根据条件、结论,结合图形,写出已知求证;
(4)对条件与结论进行分析;
(5)根据分析,写出证明过程
3.证明常用的方法:综合法、分析法和反证法。
四、辅助线在证明中的应用:
在几何题的证明中,有时了为证明需要,在原题的图形上添加一些线度,这些线段叫做辅助线,常用虚线表示。并在证明的开始,写出添加过程,在证明中添加的辅助线可作为已知条件参与证明。
常见考法
(1)灵活运用基础知识进行推理,运用综合法、分析法,从条件和结论两方面出发进行证明;(2)在中考中,考查类比推理,先设计一个条件、结论明确的问题,以此作为类比对象,然后再对其改造 。比如,图形的变式,添加某些新的属性或改变某些属性,通过与原有问题的比较,推测新问题的结论与解决方法。
误区提醒
(1)不能准确把握几何公理、定理的内容;
(2)数学语言、符号语言、文字语言在相互转化中出现表述错误。
中考数学知识点
圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连。同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦。
圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系。
正多边形诀窍歌:份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前.
经过分点做切线,切线相交n个点.n个交点做顶点,外切正n边形便出现.正n边形很美观,它有内接,外切圆,内接、外切都,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点,如果n值为偶数,中心对称很方便.正n边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形2n个整,依此计算便简单.
函数学习口决:正比例函数是直线,图象一定过圆点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键。
反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线x、y的顺序可交换。
二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,△的符号最简便,x轴上数交点,a、b同号轴左边抛物线平移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。