欢迎光临酷猫写作网
当前位置:酷猫写作 > 范文大全 > 工作总结 > 总结范文

高一数学必修一总结8篇

发布时间:2023-06-13 12:48:03 查看人数:73

高一数学必修一总结8篇

第1篇 高一数学必修一知识点总结

高一数学必修一知识点总结范例

一、集合有关概念

1. 集合的含义

2. 集合的中元素的三个特性:

(1) 元素的确定性,

(2) 元素的互异性,

(3) 元素的无序性,

3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(1) 用拉丁字母表示集合:a={我校的篮球队员},b={1,2,3,4,5}

(2) 集合的表示方法:列举法与描述法。

? 注意:常用数集及其记法:

非负整数集(即自然数集) 记作:n

正整数集 n*或 n+ 整数集z 有理数集q 实数集r

1) 列举法:{a,b,c……}

2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?r| x-3>;2} ,{x| x-3>;2}

3) 语言描述法:例:{不是直角三角形的三角形}

4) venn图:

4、集合的分类:

(1) 有限集 含有有限个元素的集合

(2) 无限集 含有无限个元素的集合

(3) 空集 不含任何元素的集合 例:{x|x2=-5}

二、集合间的基本关系

1.“包含”关系—子集

注意: 有两种可能(1)a是b的一部分,;(2)a与b是同一集合。

反之: 集合a不包含于集合b,或集合b不包含集合a,记作a b或b a

2.“相等”关系:a=b (5≥5,且5≤5,则5=5)

实例:设 a={x|x2-1=0} b={-1,1} “元素相同则两集合相等”

即:① 任何一个集合是它本身的子集。a?a

②真子集:如果a?b,且a? b那就说集合a是集合b的真子集,记作a b(或b a)

③如果 a?b, b?c ,那么 a?c

④ 如果a?b 同时 b?a 那么a=b

3. 不含任何元素的集合叫做空集,记为φ

规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

? 有n个元素的集合,含有2n个子集,2n-1个真子集

三、集合的运算

运算类型 交 集 并 集 补 集

定 义 由所有属于a且属于b的元素所组成的集合,叫做a,b的交集.记作a b(读作‘a交b’),即a b={x|x a,且x b}.

由所有属于集合a或属于集合b的元素所组成的集合,叫做a,b的并集.记作:a b(读作‘a并b’),即a b ={x|x a,或x b}).

设s是一个集合,a是s的一个子集,由s中所有不属于a的元素组成的集合,叫做s中子集a的补集(或余集)

更多资料请点击》》http://class.hujiang.com/category/131181576619/p28_292

二、函数的有关概念

1.函数的概念:设a、b是非空的数集,如果按照某个确定的对应关系f,使对于集合a中的任意一个数x,在集合b中都有唯一确定的数f(x)和它对应,那么就称f:a→b为从集合a到集合b的一个函数.记作: y=f(x),x∈a.其中,x叫做自变量,x的取值范围a叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈a }叫做函数的值域.

注意:

1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:

(1)分式的分母不等于零;

(2)偶次方根的被开方数不小于零;

(3)对数式的真数必须大于零;

(4)指数、对数式的底必须大于零且不等于1.

(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的.x的值组成的集合.

(6)指数为零底不可以等于零,

(7)实际问题中的函数的定义域还要保证实际问题有意义.

相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)

2.值域 : 先考虑其定义域

(1)观察法

(2)配方法

(3)代换法

3. 函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈a)中的x为横坐标,函数值y为纵坐标的点p(x,y)的集合c,叫做函数 y=f(x),(x ∈a)的图象.c上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在c上 .

(2) 画法

a、 描点法:

b、 图象变换法

常用变换方法有三种

1) 平移变换

2) 伸缩变换

3) 对称变换

4.区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间

(2)无穷区间

(3)区间的数轴表示.

5.映射

一般地,设a、b是两个非空的集合,如果按某一个确定的对应法则f,使对于集合a中的任意一个元素x,在集合b中都有唯一确定的元素y与之对应,那么就称对应f:a b为从集合a到集合b的一个映射。记作f:a→b

6.分段函数

(1)在定义域的不同部分上有不同的解析表达式的函数。

(2)各部分的自变量的取值情况.

(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.

补充:复合函数

如果y=f(u)(u∈m),u=g(x)(x∈a),则 y=f[g(x)]=f(x)(x∈a) 称为f、g的复合函数。

二.函数的性质

1.函数的单调性(局部性质)

(1)增函数

设函数y=f(x)的定义域为i,如果对于定义域i内的某个区间d内的任意两个自变量x1,x2,当x1

如果对于区间d上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间d称为y=f(x)的单调减区间.

注意:函数的单调性是函数的局部性质;

(2) 图象的特点

如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

(3).函数单调区间与单调性的判定方法

(a) 定义法:

○1 任取x1,x2∈d,且x1

○2 作差f(x1)-f(x2);

○3 变形(通常是因式分解和配方);

○4 定号(即判断差f(x1)-f(x2)的正负);

○5 下结论(指出函数f(x)在给定的区间d上的单调性).

(b)图象法(从图象上看升降)

(c)复合函数的单调性

复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”

注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.

8.函数的奇偶性(整体性质)

(1)偶函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

(2).奇函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

(3)具有奇偶性的函数的图象的特征

偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

利用定义判断函数奇偶性的步骤:

○1首先确定函数的定义域,并判断其是否关于原点对称;

○2确定f(-x)与f(x)的关系;

○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.

(2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;

(3)利用定理,或借助函数的图象判定 .

9、函数的解析表达式

(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

(2)求函数的解析式的主要方法有:

1) 凑配法

2) 待定系数法

3) 换元法

4) 消参法

10.函数最大(小)值(定义见课本p36页)

○1 利用二次函数的性质(配方法)求函数的最大(小)值

○2 利用图象求函数的最大(小)值

○3 利用函数单调性的判断函数的最大(小)值:

如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);

如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

第2篇 高一数学必修一:各章知识点总结

导语心无旁骛,全力以赴,争分夺秒,顽强拼搏脚踏实地,不骄不躁,长风破浪,直济沧海,我们,注定成功!高一频道为大家推荐《高一数学必修一:各章知识点总结》希望对你的学习有帮助!

第一章集合与函数概念

一、集合有关概念

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:

1.元素的确定性;2.元素的互异性;3.元素的无序性

说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

1.用拉丁字母表示集合:a={我校的篮球队员},b={1,2,3,4,5}

2.集合的表示方法:列举法与描述法。

注意啊:常用数集及其记法:

非负整数集(即自然数集)记作:n

正整数集n*或n+整数集z有理数集q实数集r

关于“属于”的概念

集合的元素通常用小写的拉丁字母表示,如:a是集合a的元素,就说a属于集合a记作a∈a,相反,a不属于集合a记作a?a

列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}

②数学式子描述法:例:不等式x-3>2的解集是{x?r|x-3>2}或{x|x-3>2}

4、集合的分类:

1.有限集含有有限个元素的集合

2.无限集含有无限个元素的集合

3.空集不含任何元素的集合例:{x|x2=-5}

二、集合间的基本关系

1.“包含”关系—子集

注意:有两种可能(1)a是b的一部分,;(2)a与b是同一集合。

反之:集合a不包含于集合b,或集合b不包含集合a,记作ab或ba

2.“相等”关系(5≥5,且5≤5,则5=5)

实例:设a={x|x2-1=0}b={-1,1}“元素相同”

结论:对于两个集合a与b,如果集合a的任何一个元素都是集合b的元素,同时,集合b的任何一个元素都是集合a的元素,我们就说集合a等于集合b,即:a=b

①任何一个集合是它本身的子集。aía

②真子集:如果aíb,且a1b那就说集合a是集合b的真子集,记作ab(或ba)

③如果aíb,bíc,那么aíc

④如果aíb同时bía那么a=b

3.不含任何元素的集合叫做空集,记为φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

三、集合的运算

1.交集的定义:一般地,由所有属于a且属于b的元素所组成的集合,叫做a,b的交集.

记作a∩b(读作”a交b”),即a∩b={x|x∈a,且x∈b}.

2、并集的定义:一般地,由所有属于集合a或属于集合b的元素所组成的集合,叫做a,b的并集。记作:a∪b(读作”a并b”),即a∪b={x|x∈a,或x∈b}.

3、交集与并集的性质:a∩a=a,a∩φ=φ,a∩b=b∩a,a∪a=a,

a∪φ=a,a∪b=b∪a.

4、全集与补集

(1)补集:设s是一个集合,a是s的一个子集(即),由s中所有不属于a的元素组成的集合,叫做s中子集a的补集(或余集)

记作:csa即csa={x|x?s且x?a}

s

csa

a

(2)全集:如果集合s含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用u来表示。

(3)性质:⑴cu(cua)=a⑵(cua)∩a=φ⑶(cua)∪a=u

二、函数的有关概念

1.函数的概念:设a、b是非空的数集,如果按照某个确定的对应关系f,使对于集合a中的任意一个数x,在集合b中都有确定的数f(x)和它对应,那么就称f:a→b为从集合a到集合b的一个函数.记作:y=f(x),x∈a.其中,x叫做自变量,x的取值范围a叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈a}叫做函数的值域.

注意:2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3函数的定义域、值域要写成集合或区间的形式.

定义域补充

能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义.

(又注意:求出不等式组的解集即为函数的定义域。)

构成函数的三要素:定义域、对应关系和值域

再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)

(见课本21页相关例2)

值域补充

(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.(2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。

3.函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈a)中的x为横坐标,函数值y为纵坐标的点p(x,y)的集合c,叫做函数y=f(x),(x∈a)的图象.

c上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在c上.即记为c={p(x,y)|y=f(x),x∈a}

图象c一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与y轴的直线最多只有一个交点的若干条曲线或离散点组成。

(2)画法

a、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点p(x,y),最后用平滑的曲线将这些点连接起来.

b、图象变换法(请参考必修4三角函数)

常用变换方法有三种,即平移变换、伸缩变换和对称变换

(3)作用:

1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。

发现解题中的错误。

4.快去了解区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.

5.什么叫做映射

一般地,设a、b是两个非空的集合,如果按某一个确定的对应法则f,使对于集合a中的任意一个元素x,在集合b中都有确定的元素y与之对应,那么就称对应f:ab为从集合a到集合b的一个映射。记作“f:ab”

给定一个集合a到b的映射,如果a∈a,b∈b.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象

说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合a、b及对应法则f是确定的;②对应法则有“方向性”,即强调从集合a到集合b的对应,它与从b到a的对应关系一般是不同的;③对于映射f:a→b来说,则应满足:(ⅰ)集合a中的每一个元素,在集合b中都有象,并且象是的;(ⅱ)集合a中不同的元素,在集合b中对应的象可以是同一个;(ⅲ)不要求集合b中的每一个元素在集合a中都有原象。

常用的函数表示法及各自的优点:

1函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2解析法:必须注明函数的定义域;3图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4列表法:选取的自变量要有代表性,应能反映定义域的特征.

注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值

补充一:分段函数(参见课本p24-25)

在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.

补充二:复合函数

如果y=f(u),(u∈m),u=g(x),(x∈a),则y=f[g(x)]=f(x),(x∈a)称为f、g的复合函数。

例如:y=2sinxy=2cos(x2+1)

7.函数单调性

(1).增函数

设函数y=f(x)的定义域为i,如果对于定义域i内的某个区间d内的任意两个自变量x1,x2,当x1

如果对于区间d上的任意两个自变量的值x1,x2,当x1

注意:1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;

2必须是对于区间d内的任意两个自变量x1,x2;当x1

(2)图象的特点

如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

(3).函数单调区间与单调性的判定方法

(a)定义法:

1任取x1,x2∈d,且x1

(b)图象法(从图象上看升降)_

(c)复合函数的单调性

复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律如下:

函数

单调性

u=g(x)

y=f(u)

y=f[g(x)]

注意:1、函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.2、还记得我们在选修里学习简单易行的导数法判定单调性吗?

8.函数的奇偶性

(1)偶函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

(2)奇函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

注意:1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。

2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).

(3)具有奇偶性的函数的图象的特征

偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

总结:利用定义判断函数奇偶性的格式步骤:1首先确定函数的定义域,并判断其定义域是否关于原点对称;2确定f(-x)与f(x)的关系;3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.

注意啊:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定;(2)有时判定f(-x)=±f(x)比较困难,可考虑根据是否有f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;(3)利用定理,或借助函数的图象判定.

9、函数的解析表达式

(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

(2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)

10.函数(小)值(定义见课本p36页)

1利用二次函数的性质(配方法)求函数的(小)值2利用图象求函数的(小)值3利用函数单调性的判断函数的(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

第二章基本初等函数

一、指数函数

(一)指数与指数幂的运算

1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.

当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).

当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

注意:当是奇数时,,当是偶数时,

2.分数指数幂

正数的分数指数幂的意义,规定:

0的正分数指数幂等于0,0的负分数指数幂没有意义

指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.

3.实数指数幂的运算性质

(1)?;

(2);

(3).

(二)指数函数及其性质

1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为r.

注意:指数函数的底数的取值范围,底数不能是负数、零和1.

2、指数函数的图象和性质

a>1

0

图象特征

函数性质

向x、y轴正负方向无限延伸

函数的定义域为r

图象关于原点和y轴不对称

非奇非偶函数

函数图象都在x轴上方

函数的值域为r+

函数图象都过定点(0,1)

自左向右看,

图象逐渐上升

自左向右看,

图象逐渐下降

增函数

减函数

在第一象限内的图象纵坐标都大于1

在第一象限内的图象纵坐标都小于1

在第二象限内的图象纵坐标都小于1

在第二象限内的图象纵坐标都大于1

图象上升趋势是越来越陡

图象上升趋势是越来越缓

函数值开始增长较慢,到了某一值后增长速度极快;

函数值开始减小极快,到了某一值后减小速度较慢;

注意:利用函数的单调性,结合图象还可以看出:

(1)在[a,b]上,值域是或;

(2)若,则;取遍所有正数当且仅当;

(3)对于指数函数,总有;

(4)当时,若,则;

二、对数函数

(一)对数

1.对数的概念:一般地,如果,那么数叫做以为底的对数,记作:(—底数,—真数,—对数式)

说明:1注意底数的限制,且;

2;

3注意对数的书写格式.

两个重要对数:

1常用对数:以10为底的对数;

2自然对数:以无理数为底的对数的对数.

对数式与指数式的互化

对数式指数式

对数底数←→幂底数

对数←→指数

真数←→幂

(二)对数的运算性质

如果,且,,,那么:

1?+;

2-;

3.

注意:换底公式

(,且;,且;).

利用换底公式推导下面的结论(1);(2).

(二)对数函数

1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).

注意:1对数函数的定义与指数函数类似,都是形式定义,注意辨别。

如:,都不是对数函数,而只能称其为对数型函数.

2对数函数对底数的限制:,且.

2、对数函数的性质:

a>1

0

图象特征

函数性质

函数图象都在y轴右侧

函数的定义域为(0,+∞)

图象关于原点和y轴不对称

非奇非偶函数

向y轴正负方向无限延伸

函数的值域为r

函数图象都过定点(1,0)

自左向右看,

图象逐渐上升

自左向右看,

图象逐渐下降

增函数

减函数

第一象限的图象纵坐标都大于0

第一象限的图象纵坐标都大于0

第二象限的图象纵坐标都小于0

第二象限的图象纵坐标都小于0

(三)幂函数

1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.

2、幂函数性质归纳.

(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);

(2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;

(3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.

第三章函数的应用

一、方程的根与函数的零点

1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:

方程有实数根函数的图象与轴有交点函数有零点.

3、函数零点的求法:

求函数的零点:

1(代数法)求方程的实数根;

2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

4、二次函数的零点:

二次函数.

1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.

2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.

第3篇 2022高一数学必修一知识点总结

高一数学集合有关概念

集合的含义

集合的中元素的三个特性:

元素的确定性如:世界上的山

元素的互异性如:由happy的字母组成的集合{h,a,p,y}

元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

用拉丁字母表示集合:a={我校的篮球队员},b={1,2,3,4,5}

集合的表示方法:列举法与描述法。

注意:常用数集及其记法:

非负整数集(即自然数集)记作:n

正整数集n*或n+整数集z有理数集q实数集r

列举法:{a,b,c……}

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x(r|x-3>2},{x|x-3>2}

语言描述法:例:{不是直角三角形的三角形}

venn图:

4、集合的分类:

有限集含有有限个元素的集合

无限集含有无限个元素的集合

空集不含任何元素的集合例:{x|x2=-5}

高一数学集合间的基本关系

1.“包含”关系—子集

注意:有两种可能(1)a是b的一部分,;(2)a与b是同一集合。

反之:集合a不包含于集合b,或集合b不包含集合a,记作ab或ba

2.“相等”关系:a=b(5≥5,且5≤5,则5=5)

实例:设a={x|x2-1=0}b={-1,1}“元素相同则两集合相等”

即:①任何一个集合是它本身的子集。a(a

②真子集:如果a(b,且a(b那就说集合a是集合b的真子集,记作ab(或ba)

③如果a(b,b(c,那么a(c

④如果a(b同时b(a那么a=b

3.不含任何元素的集合叫做空集,记为φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集

高一数学考试命题趋势

1.函数知识:基本初等函数性质的考查,以导数知识为背景的函数问题;以向量知识为背景的函数问题;从具体函数的考查转向抽象函数考查;从重结果考查转向重过程考查;从熟悉情景的考查转向新颖情景的考查。

2.向量知识:向量具有数与形的双重性,高考中向量试题的命题趋向:考查平面向量的基本概念和运算律;考查平面向量的坐标运算;考查平面向量与几何、三角、代数等学科的综合性问题。

3.不等式知识:突出工具性,淡化独立性,突出解,是不等式命题的新取向。高考中不等式试题的命题趋向:基本的线性规划问题为必考内容,不等式的性质与指数函数、对数函数、三角函数、二交函数等结合起来,考查不等式的性质、最值、函数的单调性等;证明不等式的试题,多以函数、数列、解析几何等知识为背景,在知识网络的交汇处命题,综合性强,能力要求高;解不等式的试题,往往与公式、根式和参数的讨论联系在一起。考查学生的等价转化能力和分类讨论能力;以当前经济、社会生产、生活为背景与不等式综合的应用题仍将是高考的热点,主要考查学生阅读理解能力以及分析问题、解决问题的能力。

4.立体几何知识:2022年已经变得简单,2022年难度依然不大,基本的三视图的考查难点不大,以及球与几何体的组合体,涉及切,接的问题,线面垂直、平行位置关系的考查,已经线面角,面面角和几何体的体积计算等问题,都是重点考查内容。

5.解析几何知识:小题主要涉及圆锥曲线方程,和直线与圆的位置关系,以及圆锥曲线几何性质的考查,极坐标下的解析几何知识,解答题主要考查直线和圆的知识,直线与圆锥曲线的知识,涉及圆锥曲线方程,直线与圆锥曲线方程联立,定点,定值,范围的考查,考试的难度降低。

6.导数知识:导数的考查还是以理科19题,文科20题的形式给出,从常见函数入手,导数工具作用(切线和单调性)的考查,综合性强,能力要求高;往往与公式、导数往往与参数的讨论联系在一起,考查转化与化归能力,但今年的难点整体偏低。

7.开放型创新题:答案不,或是逻辑推理题,以及解答题中的开放型试题的考查,都是重点,理科13,文科14题。

第4篇 2022高一数学必修一知识点总结

第一章 集合与函数概念

一、集合有关概念

1.集合的含义

2.集合的中元素的三个特性:

(1)元素的确定性如:世界上的山

(2)元素的互异性如:由happy的字母组成的集合{h,a,p,y}

(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合

3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:a={我校的篮球队员},b={1,2,3,4,5}

(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:x kb 1.c om

非负整数集(即自然数集) 记作:n

正整数集 :n*或 n+

整数集: z

有理数集: q

实数集: r

1)列举法:{a,b,c……}

2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{xr|x-3>2} ,{x|x-3>2}

3) 语言描述法:例:{不是直角三角形的三角形}

4) venn图:

4、集合的分类:

(1)有限集 含有有限个元素的集合

(2)无限集 含有无限个元素的集合

(3)空集 不含任何元素的集合 例:{x|x2=-5}

二、集合间的基本关系

1.“包含”关系—子集

注意: 有两种可能(1)a是b的一部分,;(2)a与b是同一集合。

反之: 集合a不包含于集合b,或集合b不包含集合a,记作a b或b a

2.“相等”关系:a=b (5≥5,且5≤5,则5=5)

实例:设 a={x|x2-1=0} b={-1,1} “元素相同则两集合相等”

即:① 任何一个集合是它本身的子集。aa

② 真子集:如果ab,且a b那就说集合a是集合b的真子集,记作a b(或b a)

③ 如果 ab, bc ,那么 ac

④ 如果ab 同时 ba 那么a=b

3. 不含任何元素的集合叫做空集,记为φ

规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

4.子集个数:

有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集

三、集合的运算

运算类型 交 集 并 集 补 集

定 义 由所有属于a且属于b的元素所组成的集合,叫做a,b的交集.记作a b(读作‘a交b’),即a b={x|x a,且x b}.

由所有属于集合a或属于集合b的元素所组成的集合,叫做a,b的并集.记作:a b(读作‘a并b’),即a b ={x|x a,或x b}).

设s是一个集合,a是s的一个子集,由s中所有不属于a的元素组成的集合,叫做s中子集a的补集(或余集)

记作 ,即

csa=

质 a a=a

a φ=φ

a b=b a

a b a

a b b

a a=a

a φ=a

a b=b a

a b a

a b b

(cua) (cub)

= cu (a b)

(cua) (cub)

= cu(a b)

a (cua)=u

a (cua)= φ.

二、函数的有关概念

1.函数的概念

设a、b是非空的数集,如果按照某个确定的对应关系f,使对于集合a中的任意一个数x,在集合b中都有确定的数f(x)和它对应,那么就称f:a→b为从集合a到集合b的一个函数.记作: y=f(x),x∈a.其中,x叫做自变量,x的取值范围a叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈a }叫做函数的值域.

注意:

1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:

(1)分式的分母不等于零;

(2)偶次方根的被开方数不小于零;

(3)对数式的真数必须大于零;

(4)指数、对数式的底必须大于零且不等于1.

(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.

(6)指数为零底不可以等于零,

(7)实际问题中的函数的定义域还要保证实际问题有意义.

相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);

②定义域一致 (两点必须同时具备)

2.值域 : 先考虑其定义域

(1)观察法 (2)配方法 (3)代换法

3. 函数图象知识归纳

(1)定义:

在平面直角坐标系中,以函数 y=f(x) , (x∈a)中的x为横坐标,函数值y为纵坐标的点p(x,y)的集合c,叫做函数 y=f(x),(x ∈a)的图象.c上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在c上 .

(2) 画法

1.描点法: 2.图象变换法:常用变换方法有三种:1)平移变换2)伸缩变换3)对称变换

4.区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间 (2)无穷区间 (3)区间的数轴表示.

5.映射

一般地,设a、b是两个非空的集合,如果按某一个确定的对应法则f,使对于集合a中的任意一个元素x,在集合b中都有确定的元素y与之对应,那么就称对应f:a b为从集合a到集合b的一个映射。记作“f(对应关系):a(原象) b(象)”

对于映射f:a→b来说,则应满足:

(1)集合a中的每一个元素,在集合b中都有象,并且象是的;

(2)集合a中不同的元素,在集合b中对应的象可以是同一个;

(3)不要求集合b中的每一个元素在集合a中都有原象。

6.分段函数

(1)在定义域的不同部分上有不同的解析表达式的函数。

(2)各部分的自变量的取值情况.

(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.

补充:复合函数

如果y=f(u)(u∈m),u=g(x)(x∈a),则 y=f[g(x)]=f(x)(x∈a) 称为f、g的复合函数。

二.函数的性质

1.函数的单调性(局部性质)

(1)增函数

设函数y=f(x)的定义域为i,如果对于定义域i内的某个区间d内的任意两个自变量x1,x2,当x1

如果对于区间d上的任意两个自变量的值x1,x2,当x1

注意:函数的单调性是函数的局部性质;

(2) 图象的特点

如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

(3).函数单调区间与单调性的判定方法

(a) 定义法:

(1)任取x1,x2∈d,且x1

(2)作差f(x1)-f(x2);或者做商

(3)变形(通常是因式分解和配方);

(4)定号(即判断差f(x1)-f(x2)的正负);

(5)下结论(指出函数f(x)在给定的区间d上的单调性).

(b)图象法(从图象上看升降)

(c)复合函数的单调性

复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”

注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.

8.函数的奇偶性(整体性质)

(1)偶函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

(2)奇函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

(3)具有奇偶性的函数的图象的特征:偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

9.利用定义判断函数奇偶性的步骤:

○1首先确定函数的定义域,并判断其是否关于原点对称;

○2确定f(-x)与f(x)的关系;

○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.

注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .

10、函数的解析表达式

(1)函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

(2)求函数的解析式的主要方法有:1.凑配法2.待定系数法3.换元法4.消参法

11.函数(小)值

○1 利用二次函数的性质(配方法)求函数的(小)值

○2 利用图象求函数的(小)值

○3 利用函数单调性的判断函数的(小)值:

如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有值f(b);

如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

第三章 基本初等函数

一、指数函数

(一)指数与指数幂的运算

1.根式的概念:一般地,如果 ,那么 叫做 的 次方根,其中 >1,且 ∈ *.

负数没有偶次方根;0的任何次方根都是0,记作 。

当 是奇数时, ,当 是偶数时,

2.分数指数幂

正数的分数指数幂的意义,规定:

0的正分数指数幂等于0,0的负分数指数幂没有意义

3.实数指数幂的运算性质

(1) · ;

(2) ;

(3) .

(二)指数函数及其性质

1、指数函数的概念:一般地,函数 叫做指数函数,其中x是自变量,函数的定义域为r.

注意:指数函数的底数的取值范围,底数不能是负数、零和1.

2、指数函数的图象和性质

a>1 0<1

定义域 r 定义域 r

值域y>0 值域y>0

在r上单调递增 在r上单调递减

非奇非偶函数 非奇非偶函数

函数图象都过定点(0,1) 函数图象都过定点(0,1)

注意:利用函数的单调性,结合图象还可以看出:

(1)在[a,b]上, 值域是 或 ;

(2)若 ,则 ; 取遍所有正数当且仅当 ;

(3)对于指数函数 ,总有 ;

二、对数函数

(一)对数

1.对数的概念:

一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( — 底数, — 真数, — 对数式)

说明:○1 注意底数的限制 ,且 ;

○2 ;

○3 注意对数的书写格式.

两个重要对数:

○1 常用对数:以10为底的对数 ;

○2 自然对数:以无理数 为底的对数的对数 .

指数式与对数式的互化

幂值 真数

= n = b

底数

指数 对数

(二)对数的运算性质

如果 ,且 , , ,那么:

○1 · + ;

○2 - ;

○3 .

注意:换底公式: ( ,且 ; ,且 ; ).

利用换底公式推导下面的结论:(1) ;(2) .

(3)、重要的公式 ①、负数与零没有对数; ②、 , ③、对数恒等式

(二)对数函数

1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞).

注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如: , 都不是对数函数,而只能称其为对数型函数.

○2 对数函数对底数的限制: ,且 .

2、对数函数的性质:

a>1 0<1

定义域x>0 定义域x>0

值域为r 值域为r

在r上递增 在r上递减

函数图象都过定点(1,0) 函数图象都过定点(1,0)

(三)幂函数

1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数.

2、幂函数性质归纳.

(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);

(2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸;

(3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴.

第四章 函数的应用

一、方程的根与函数的零点

1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。

2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。

即:方程 有实数根 函数 的图象与 轴有交点 函数 有零点.

3、函数零点的求法:

○1 (代数法)求方程 的实数根;

○2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点.

4、二次函数的零点:

二次函数 .

(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点.

(2)△=0,方程 有两相等实根,二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点.

(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.

5.函数的模型

第5篇 高一数学必修一知识点总结:幂函数的性质考点

高一数学必修1知识点总结:幂函数的性质考点

定义:

形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

定义域和值域:

当a为不同的数值时,幂函数的定义域的不同情况如下:

如果a为任意实数,则函数的定义域为大于0的所有实数;

如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:

在x大于0时,函数的值域总是大于0的实数。

在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

而只有a为正数,0才进入函数的值域

性质:

对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是r,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)。因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

排除了为0与负数两种可能,即对于x>;0,则a可以是任意实数;

排除了为0这种可能,即对于x<;0和x>;0的所有实数,q不能是偶数;

排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:

如果a为任意实数,则函数的定义域为大于0的所有实数;

第6篇 高一数学必修一平面向量知识点总结

高一数学必修一平面向量知识点总结

数量:只有大小,没有方向的量.

有向线段的三要素:起点、方向、长度.

零向量:长度为的向量.

单位向量:长度等于个单位的向量.

相等向量:长度相等且方向相同的向量

&向量的运算

加法运算

ab+bc=ac,这种计算法则叫做向量加法的三角形法则。

已知两个从同一点o出发的两个向量oa、ob,以oa、ob为邻边作平行四边形oacb,则以o为起点的对角线oc就是向量oa、ob的和,这种计算法则叫做向量加法的平行四边形法则。

对于零向量和任意向量a,有:0+a=a+0=a。

|a+b|≤|a|+|b|。

向量的加法满足所有的加法运算定律。

减法运算

与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。

(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

数乘运算

实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ >;0时,λa的方向和a的方向相同,当λ< 0时,λa的方向和a的方向相反,当λ = 0时,λa = 0。

设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λμ)a = λa μa(3)λ(a ± b) = λa ±λb(4)(-λ)a =-(λa) = λ(-a)。

向量的加法运算、减法运算、数乘运算统称线性运算。

向量的数量积

已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的'数量积为0。

a?b的几何意义:数量积a?b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。

两个向量的数量积等于它们对应坐标的乘积的和。

第7篇 高一数学必修一重点知识点总结

一、集合

一、集合有关概念

1.集合的含义

2.集合的中元素的三个特性:

(1)元素的确定性如:世界上的山

(2)元素的互异性如:由happy的字母组成的集合{h,a,p,y}

(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:a={我校的篮球队员},b={1,2,3,4,5}

(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:

非负整数集(即自然数集)记作:n

正整数集n*或n+整数集z有理数集q实数集r

1)列举法:{a,b,c……}

2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{xr|x-3>2},{x|x-3>2}

3)语言描述法:例:{不是直角三角形的三角形}

4)venn图:

4、集合的分类:

(1)有限集含有有限个元素的集合

(2)无限集含有无限个元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

二、集合间的基本关系

1.“包含”关系—子集

注意:有两种可能(1)a是b的一部分,;(2)a与b是同一集合。

反之:集合a不包含于集合b,或集合b不包含集合a,记作ab或ba

2.“相等”关系:a=b(5≥5,且5≤5,则5=5)

实例:设a={x|x2-1=0}b={-1,1}“元素相同则两集合相等”

即:①任何一个集合是它本身的子集。aa

②真子集:如果ab,且ab那就说集合a是集合b的真子集,记作ab(或ba)

③如果ab,bc,那么ac

④如果ab同时ba那么a=b

3.不含任何元素的集合叫做空集,记为φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集

二、函数

1、函数定义域、值域求法综合

2.、函数奇偶性与单调性问题的解题策略

3、恒成立问题的求解策略

4、反函数的几种题型及方法

5、二次函数根的问题——一题多解

&指数函数y=a^x

a^a*a^b=a^a+b(a>0,a、b属于q)

(a^a)^b=a^ab(a>0,a、b属于q)

(ab)^a=a^a*b^a(a>0,a、b属于q)

指数函数对称规律:

1、函数y=a^x与y=a^-x关于y轴对称

2、函数y=a^x与y=-a^x关于x轴对称

3、函数y=a^x与y=-a^-x关于坐标原点对称

&对数函数y=loga^x

如果,且,,,那么:

○1·+;

○2-;

○3.

注意:换底公式

(,且;,且;).

幂函数y=x^a(a属于r)

1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.

2、幂函数性质归纳.

(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);

(2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;

(3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.

方程的根与函数的零点

1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。

即:方程有实数根函数的图象与轴有交点函数有零点.

3、函数零点的求法:

○1(代数法)求方程的实数根;

○2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

4、二次函数的零点:

二次函数.

(1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.

(2)△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

(3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.

三、平面向量

向量:既有大小,又有方向的量.

数量:只有大小,没有方向的量.

有向线段的三要素:起点、方向、长度.

零向量:长度为的向量.

单位向量:长度等于个单位的向量.

相等向量:长度相等且方向相同的向量

&向量的运算

加法运算

ab+bc=ac,这种计算法则叫做向量加法的三角形法则。

已知两个从同一点o出发的两个向量oa、ob,以oa、ob为邻边作平行四边形oacb,则以o为起点的对角线oc就是向量oa、ob的和,这种计算法则叫做向量加法的平行四边形法则。

对于零向量和任意向量a,有:0+a=a+0=a。

|a+b|≤|a|+|b|。

向量的加法满足所有的加法运算定律。

减法运算

与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。

(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

数乘运算

实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ=0时,λa=0。

设λ、μ是实数,那么:(1)(λμ)a=λ(μa)(2)(λμ)a=λaμa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a)。

向量的加法运算、减法运算、数乘运算统称线性运算。

向量的数量积

已知两个非零向量a、b,那么|a||b|cosθ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。

a?b的几何意义:数量积a?b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。

两个向量的数量积等于它们对应坐标的乘积的和。

四、三角函数

1、善于用“1“巧解题

2、三角问题的非三角化解题策略

3、三角函数有界性求最值解题方法

4、三角函数向量综合题例析

5、三角函数中的数学思想方法

第8篇 高一数学必修一公式总结

三角函数公式

两角和公式 sin(a+b)=sinacosb+cosasinb sin(a-b)=sinacosb-sinbcosa

cos(a+b)=cosacosb-sinasinb cos(a-b)=cosacosb+sinasinb

tan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb) ctg(a+b)=(ctgactgb-1)/(ctgb+ctga) ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)

倍角公式 tan2a=2tana/(1-tan2a) ctg2a=(ctg2a-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式 sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2) cos(a/2)=√((1+cosa)/2) cos(a/2)=-√((1+cosa)/2) tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa)) ctg(a/2)=√((1+cosa)/((1-cosa)) ctg(a/2)=-√((1+cosa)/((1-cosa))

积化和差 2sinacosb=sin(a+b)+sin(a-b)

2cosasinb=sin(a+b)-sin(a-b)

2cosacosb=cos(a+b)-sin(a-b)

-2sinasinb=cos(a+b)-cos(a-b)

和差化积 sina+sinb=2sin((a+b)/2)cos((a-b)/2

cosa+cosb=2cos((a+b)/2)sin((a-b)/2)

tana+tanb=sin(a+b)/cosacosb

tana-tanb=sin(a-b)/cosacosb

ctga+ctgb=sin(a+b)/sinasinb

-ctga+ctgb=sin(a+b)/sinasin

集合与函数概念

一,集合有关概念

1,集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素.

2,集合的中元素的三个特性:

1.元素的确定性; 2.元素的互异性; 3.元素的无序性

说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素.

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素.

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样.

(4)集合元素的三个特性使集合本身具有了确定性和整体性.3,集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

1. 用拉丁字母表示集合:a={我校的篮球队员},b={1,2,3,4,5}

2.集合的表示方法:列举法与描述法.

注意啊:常用数集及其记法:

非负整数集(即自然数集) 记作:n

正整数集 n*或 n+ 整数集z 有理数集q 实数集r

关于'属于'的概念

集合的元素通常用小写的拉丁字母表示,如:a是集合a的元素,就说a属于集合a 记作 a∈a ,相反,a不属于集合a 记作 a(a

列举法:把集合中的元素一一列举出来,然后用一个大括号括上.

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.用确定的条件表示某些对象是否属于这个集合的方法.

①语言描述法:例:{不是直角三角形的三角形}

②数学式子描述法:例:不等式x-3]2的解集是{x(r| x-3]2}或{x| x-3]2}

4,集合的分类:

1.有限集 含有有限个元素的集合

2.无限集 含有无限个元素的集合

3.空集 不含任何元素的集合 例:{x|x2=-5}

二,集合间的基本关系

1.'包含'关系—子集

注意:有两种可能(1)a是b的一部分,;(2)a与b是同一集合.

反之: 集合a不包含于集合b,或集合b不包含集合a,记作ab或ba

2.'相等'关系(5≥5,且5≤5,则5=5)

实例:设 a={x|x2-1=0} b={-1,1} '元素相同'

结论:对于两个集合a与b,如果集合a的任何一个元素都是集合b的元素,同时,集合b的任何一个元素都是集合a的元素,我们就说集合a等于集合b,即:a=b

① 任何一个集合是它本身的子集.a(a

②真子集:如果a(b,且a( b那就说集合a是集合b的真子集,记作ab(或ba)

③如果 a(b, b(c ,那么 a(c

④ 如果a(b 同时 b(a 那么a=b

3. 不含任何元素的集合叫做空集,记为φ

规定: 空集是任何集合的子集, 空集是任何非空集合的真子集.

三,集合的运算

1.交集的定义:一般地,由所有属于a且属于b的元素所组成的集合,叫做a,b的交集.

记作a∩b(读作'a交b'),即a∩b={x|x∈a,且x∈b}.

2,并集的定义:一般地,由所有属于集合a或属于集合b的元素所组成的集合,叫做a,b的并集.记作:a∪b(读作'a并b'),即a∪b={x|x∈a,或x∈b}.

3,交集与并集的性质:a∩a = a, a∩φ= φ, a∩b = b∩a,a∪a = a,a∪φ= a ,a∪b = b∪a.

4,全集与补集

(1)补集:设s是一个集合,a是s的一个子集(即),由s中所有不属于a的元素组成的集合,叫做s中子集a的补集(或余集)

记作: csa 即 csa ={x ( x(s且 x(a}

(2)全集:如果集合s含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集.通常用u来表示.

(3)性质:⑴cu(c ua)=a ⑵(c ua)∩a=φ ⑶(cua)∪a=u

高一数学必修一总结8篇

三角函数公式两角和公式sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosacos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatan…
推荐度:
点击下载文档文档为doc格式

高一数学必修一相关文章

  • 高一数学必修一总结8篇
  • 高一数学必修一总结8篇73人关注

    三角函数公式两角和公式sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosacos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1- ...[更多]

总结范文热门信息